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Abstract

A program is presented which will return the most probable sequence location for a short connected set of residues
in a protein given just 13Cα chemical shifts (δ(13Cα)) and data restricting the ϕ and ψ backbone angles. Data taken
from both the BioMagResBank and the Protein Data Bank were used to create a probability density function (PDF)
using a multivariate normal distribution in δ(13Cα), ϕ, and ψ space for each amino acid residue. Extracting and
combining probabilities for particular amino acid residues in a short proposed sequence yields a score indicative
of the correctness of the proposed assignment. The program is illustrated using several proteins for which structure
and 13Cα chemical shift data are available.

Introduction

The first step in a traditional approach to NMR struc-
ture determination of a protein is sequential assign-
ment of backbone resonances. The most reliable route
to assignments relies heavily on a suite of four or more
triple resonance experiments collected on proteins uni-
formly enriched to high levels in both 15N and 13C
(Kanelis et al., 2001; Lian and Middleton, 2001). This
route to assignment has been automated to a great ex-
tent (Atreya et al., 2002; Bartels et al., 1996; Coggins
and Zhou, 2003; Moseley et al., 2001), but the amount
of data, time required for data acquisition, and the ef-
fort required to label protein is still significant. There
are now a number of activities that could benefit from
a reduction of time and effort devoted to assignment.
For example, structural genomics, where rapid struc-
ture determination of a large number of proteins is a
goal, would clearly benefit, and drug design, where as-
signment of protein resonances is often a prerequisite
to NMR based ligand screens, may also benefit. Both
activities present opportunities for use of prior struc-
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tural knowledge in lieu of exhaustive data acquisition
for assignment purposes. Here we present a program
that capitalizes on these opportunities; it relies largely
on connectivity and 13Cα shift (δ(13Cα)) data that can
be collected in a single experiment on partially labeled
samples.

As a part of a structural genomics effort a pro-
cedure in which three NMR experiments yield all
the data required for resonance assignment and struc-
ture determination has been recently devised (Tian et
al., 2001). Data from these three experiments (phase-
modulated HSQC (Tolmann et al., 1996), soft HNCA-
E.COSY (Weisemann et al., 1994) and 2D IP-HSQC
(Wang et al., 1998)), when combined, provide δ(13Cα),
13Cα

i − 13Cα
i−1 connectivities and residual dipolar

couplings (RDCs). In this particular case the δ(13Cα)
and 13Cα

i − 13Cα
i−1 connectivities are provided by a

soft HNCA-E.COSY, but any HNCA type experiment
(Kay et al., 1990) could provide this information. The
additional information provided by the soft HNCA-
E.COSY comes in the form of RDCs. The combined
RDCs from all three experiments permit calculation of
the relative orientation of the peptide planes, thereby
providing structural information in the form of back-
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bone torsion angles (ϕ, ψ). Thus, the Tian procedure
provides connectivity of small fragments and defines
backbone torsion angles (ϕ, ψ) before assignment of
amino acid residue types or sequential location. This
information will be exploited along with backbone
atom chemical shift data in the assignment tool presen-
ted. The same tool may be applicable to cases where
ϕ restrictions are derived from measurements of scalar
coupling and ψ restrictions from cross-correlation ef-
fects (Schwalbe et al., 2001), rather than structure
determination of a connected fragment.

In the drug discovery area the study of protein
ligand interaction by NMR has also blossomed (Stock-
man and Dalvit, 2002). In some applications, perturb-
ation of protein NMR resonances (HSQC cross-peaks)
by ligand addition is a primary source of information.
Often x-ray structures of the target proteins exist and
resonance assignment becomes the primary obstacle.
Here, ϕ and ψ information from deposited structure
files can be used, thereby reducing the experimental
requirements to one HNCA experiment (Kay et al.,
1990), or a combination of HNCA and HN(CO)CA
(Bax and Ikura, 1991) experiments, to obtain the ne-
cessary experimental 13Cα shifts and connectivities.
An expeditious determination of the sequential posi-
tion of peptide fragments using these easily obtained
data would clearly expedite research.

Methods

It is well known that 13Cα chemical shifts are sensit-
ive to both amino acid residue type and local back-
bone (secondary) structure. Normally δ(13Cα) res-
onances are assigned to amino acid residue types
and the deviation of chemical shifts from random
coil values for the amino acid residue is used to
deduce secondary structure (Spera and Bax, 1991;
Wishart and Case, 2001). The situations described
above are different in that local structures are known
first. Since the BioMagResBank’s (BMRB URL:
http://www.bmrb.wisc.edu; (Seavey, 1991; Ulrich
et al., 1998)) database of chemical shifts and other
NMR data contains thousands of entries, it seemed
possible to combine shift data from the BMRB with
structural data available from the Protein Data Bank
(PDB URL: http://www.rcsb.org/pdb; (Berman et al.,
2000)) to provide a statistic that can predict amino
acid residue type from 13Cα shift and local structure
characteristics.

Chemical shifts from proteins deposited in the
BMRB were associated with protein structures in
the PDB. For the associated proteins, two different
data sets were obtained. The first contains (δ(13Cα),
ϕ, ψ) data for each amino acid residue. To con-
struct this data set dihedral angles were determ-
ined from PDB files using the program dang (URL:
http://kinemage.biochem.duke.edu; (Word, 2000)).
The resulting number of data points for each amino
acid residue is given in Table 1. These correspond
to roughly the same amino acid residue distribution
percentages as are available in the BMRB. Approx-
imately half of the 13Cα chemical shifts available in
the BMRB were used. The second data set was de-
rived from the first and contains (δ(13Cα), 3JHNHA)

data points. Couplings were calculated from the pre-
viously determined ϕ angles using a standard Karplus
equation (1)
3J HNHA = A cos2(ϕ − 60) + B cos(ϕ − 60) + C (1)

with two different parameter sets, A = 6.4, B = −1.4,
C = 1.9 (Pardi et al., 1984) and A = 6.51, B = −1.76,
C = 1.6 (Vűister and Bax, 1993). Results obtained
from both parameter sets were indistinguishable.

The plot of a probability density function (PDF)
could be represented as a three dimensional (δ(13Cα),
ϕ, ψ, frequency) or two dimensional (δ(13Cα),
3JHNHA, frequency) histogram in which the amplitude
of a point is simply the number of occurrences within
appropriate ϕ, ψ and δ(13Cα) or 3JHNHA and δ(13Cα)
intervals. However, kernel density estimation (Silver-
man, 1986) is more flexible than histograms because
it avoids the problems associated with bins (size and
placement) and allows the use of kernels, or error
functions, which better describe the distribution of
data. As an example, Figure 1 shows the distribution
of the 13Cα chemical shifts obtained for glutamine. If
we were to use a histogram to describe this distribution
we would have to choose a bin size. For purposes of
illustration, let us suppose that the error in measure-
ment of the chemical shift is ± 0.1 ppm. The top plot
(Figure 1a) is an example of what would happen if a
histogram with a bin size of 0.2 were used to describe
the distribution. The highest point (at 59.0 ppm) has
a normalized value of 0.0575 while the bin next to it
(58.8 ppm) has a value of 0.0343. In addition there
are many areas for which the probability density is
zero. These discontinuities and zero points are avoided
when using PDFs. Figure 1b illustrates the distribu-
tion of data using a normal distribution for the kernel
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Table 1. Number of data points used to determine the probability distribu-
tion over (δ(13Cα), ϕ, ψ) for each amino acid residue

Amino # Data %a Amino # Data %a

acid points occurrence acid points occurrence

ala 1521 7.5 leu 1779 8.8

arg 919 4.5 lys 1590 7.8

asn 793 3.9 met 378 1.9

asp 1312 6.5 phe 757 3.7

cys 313 1.5 pro 870 4.3

gln 817 4.0 ser 1206 5.9

glu 1591 7.8 thr 1138 5.6

gly 1446 7.1 trp 217 1.1

his 467 2.3 tyr 601 3.0

ile 1137 5.6 val 1426 7.0

aThe percent occurrence of each amino acid residue.

to estimate the distribution. In this case the standard
deviation was chosen to be 0.2 ppm. This oversimpli-
fied one dimension example is meant to give a general
feel for the issues regarding histograms and not to ac-
tually provide information about the distribution of a
particular amino acid residue’s 13Cα chemical shifts.
Kernel density estimation allows one to determine
the PDF with fewer assumptions thereby reducing the
propagation of error over multiple dimensions.

For our kernel we have chosen a multidimensional
normal distribution function (2) that allows us to com-
pensate for regions of δ(13Cα), ϕ, ψ space or δ(13Cα),
3JHNHA space containing sparse data. In the kernel
equation below, �x is the point at which the PDF is
being calculated (δ(13Cα), ϕ, ψ) or (δ(13Cα), 3JHNHA),
p is the dimensionality of the problem (2 or 3 in this
study), � is the covariance matrix, and −→

xi represents a
point in the experimental data set. This kernel was then
used to generate a continuous PDF from the discretely
sampled data for each amino acid residue.

PDF(
−→
x )=(2π)

-p/2
∣∣∣
∑∣∣∣

- 1/2 exp{ - 1/
2(

−→
x − −→

xi ).

−1∑
(
−→
x − −→

xi )}. (2)

The resulting function for each amino acid residue
covers 13Cα chemical shifts ranging from 40 to 70 ppm
and all of ϕ, ψ space for the first data set and the same
chemical shift range and 3JHNHA values from 1.5 to
10 Hz for the second data set. All of the resulting
PDFs were normalized over all space for each amino
acid residue. The resulting PDFs were then normalized

over all amino acid residues such that the sum of the
probabilities for a specific �x is one.

The utility of the PDFs in discriminating amino
acid residue types, given a 13Cα chemical shift, a ϕ,
and a ψ, is a complex function of differences in the
shapes of the multidimensional PDFs. If values in the
PDFs were narrowly distributed, displacements of the
means for various amino acid residues would provide
a good measure of discrimination power. Our means
are represented in the form of the vector, �x, which
indicates the location of the center of mass for the col-
lected data on each amino acid residue. However, our
distributions are broad leading to extensive overlaps
of PDFs for different amino acid residues. Hence, the
covariance matrix �, also plays an important role in
the study of multidimensional discrimination (Fukun-
aga, 1990). Analogous to the standard deviation in
the one-dimensional studies, this matrix provides de-
tailed information regarding the scattering pattern of
the data. When diagonalized it can be visualized as
hyper-ellipsoids of nth dimension. The eigenvectors of
this matrix will represent the direction of the principle
axes while the eigenvalues represent the scatter of the
ellipsoid (data) in the direction of each principle axis.
Discrimination ultimately arises from overlap of dif-
ferently oriented hyper-ellipsoids that represent a level
curve of the distribution functions. We have embodied
the extent of these overlaps in our probabilities by nor-
malizing each PDF point by point over all amino acid
residues.

Since, for a given �x, the probability for assignment
to the best amino acid residue may be only margin-
ally higher than the probability for assignment to the



4

Figure 1. Example of a histogram and a probability density function calculated for the 13Cα chemical shifts obtained from the BMRB for
glutamine. The top plot (a) is a histogram with normalized frequencies (pseudo probability densities). The bottom plot (b) is the plot of a
probability density function created using kernel density estimation.

Table 2. Comparison of assignment results for 1M2Y

# Residues % Correctly assigned

in fragment δ(13Cα), ϕ, ψa δ(13Cα), 3JHNHA
b δ(13Cα) (+structure)c

1 8 2 12

2 36 14 28

3 61 28 43

4 84 45 62

5 95 53 77

6 100 62 86

aUsing ϕ, ψ data calculated from dipolar couplings.
bUsing experimental 3JHNHA values.
cUsing a modification in which the structure is already known and torsion angles
are paired with the residues.
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Figure 2. Example of assignment of a fragment to a position in a protein sequence. (a) Sequence of a rubredoxin mutant (1M2Y) from
Pyrococcus furiosus. Four and six residue fragments (circles) are moved along the sequence as probabilities are calculated for each possible
position. Graphs of the normalized probabilities calculated for the 4 residue (b) and 6 residue (c) fragments, ICGY and ICGYIY respectively.
The (δ(13Cα), ϕ, ψ) data used for the analysis are 4Y = (56.63, −125.1, 135.1), 5V = (58.28, −110.2, 140.1), 6C = (59.79, −75.1, 64.8),
7K = (59.08, −14.7, −9.9), 8I = (62.43, −115.1, 15.2), and 9C = (59.1, −140, −30.2).

next best amino acid residue, it is necessary to im-
prove discrimination by using the fact that data can
be connected for several residues. This allows com-
bined probabilities to be calculated for sequentially
connected amino acid residue types appearing in the
protein primary sequence. A program that we will
call SEASCAPE (SEquential Assignment by Structure
and Chemical shift Assisted Probability Estimation)
was therefore written to make assignments based on

known connectivities between any number of reson-
ances, for which δ(13Cα), ϕ and ψ or δ(13Cα) and
3JHNHA are available. Given data from the fragment to
be assigned, the program takes the protein sequence
and PDFs for each amino acid residue and calcu-
lates the combined probability for the fragment to
be placed at each possible position in the sequence.
A section of contiguous residues for which the con-
nectivities and each residue’s δ(13Cα), ϕ and ψ, or
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δ(13Cα), 3JHNHA are known (hereafter called a frag-
ment) is aligned along the beginning of the sequence,
and the probability that the fragment is correctly posi-
tioned is calculated. The fragment is then repositioned
by sliding it over one residue and the probability at
that position is calculated. This procedure is repeated
until all of the positional probabilities have been cal-
culated. The most probable alignment is the position
with the highest calculated probability. The program
is written in C++ and is available from our web site
(http://tesla.ccrc.uga.edu).

Results and discussion

Figure 2 illustrates the operation of the program on
a mutant of rubredoxin from Pyrococcus furiosus
(1M2Y). The example fragments used include a four
residue segment from 4Y to 7K and a six residue
segment from 4Y to 9C. For the four residue frag-
ments the highest probability is generally less than a
factor of two greater than the second highest prob-
ability. But due to variations in this difference, the
confidence is not particularly high even though the
position with the highest probability is correct. For
the six residue fragments the highest probability is,
on the average, slightly more than an order of mag-
nitude greater than the next highest probability. When
probed with known fragments, the robustness of the
method was found to be steeply dependent upon the
length of the fragment. Table 2 shows a comparison
of how often the correct assignment resulted in the
highest probability for fragments of different lengths
given either experimental δ(13Cα), ϕ, ψ data (column
1) or experimental δ(13Cα), 3JHNHA data (column 2)
averaged over all possible assignments for 1M2Y. In
these cases, ϕ and ψ were directly determined from
NMR data and are associated with positions in the
connected amino acid residues of the fragment. The
utility of assignment using just 13Cα shifts and 3JHNHA
data seems marginal unless very long stretches of con-
nectivities can be established, but with 13Cα, ϕ, and
ψ data, sequential stretches of five or more prove to
give reliable assignments. Also included in Table 2 is
a case in which ϕ and ψ angles are taken from the
structure (column 3). Here ϕ and ψ values associated
with positions in the fragment vary as the fragment
is moved down the sequence. The percent of correct
assignments is slightly less, but largely parallels that
for experimentally determined ϕ, ψ angles given in
column one.

The program was further tested using 10 proteins
chosen from a set having a significant percentage of
their 13Cα chemical shifts deposited in the BMRB and
a structure available from the PDB. Here, angular con-
straints from either X-ray or NMR derived structures
and 13Cα data from the BMRB were used (Table 3).
These cases represent those in which assignments may
be sought for the purpose of ligand screening using
HSQC data, and just an HNCA data set may have
been collected to obtain 13Cα shifts and connectivity
information. Table 3 clearly indicates some variabil-
ity in the level of successful assignments, but in all
proteins (with one notable exception), a six residue
connected fragment can be placed in the sequence with
greater than 70% certainty using just 13Cα shifts, ϕ and
ψ data. The one exception is a DNA binding protein
(1IRF) whose binding domain has been categorized as
a novel subgroup of the winged helix-turn-helix family
(Furui et al., 1998).

In order to understand why assignment of the 1IRF
protein proved difficult we repeated the analysis with
structural data from a corresponding crystal structure
(2IRF). The crystal structure is from a DNA bound
form of the protein; the structural information was
nevertheless combined with δ(13Cα) data from solu-
tion in the absence of DNA. Four and six residue
fragments were again examined and the results are re-
ported in Table 3. When using the crystal structure we
obtained double the number of correct identifications
of fragment position. It is possible that the dynamic
nature of the protein in solution when not bound to
DNA contributed to a set of averaged torsion angles
that do not correlate well with chemical shift. Indeed,
the torsion angles for half of the residues in the pro-
tein differ substantially (>30◦) between the unbound
solution structure and the bound crystal structure.

Why certain of the other proteins show more suc-
cessful assignments than others might be expected to
depend on issues such as amino acid residue compos-
ition or secondary structure population. The PDFs of
the individual amino acid residues give an indication
of how distinctive the distributions are and how well
the program might be expect to perform on a frag-
ment of a given composition. In order to simplify
representation of data in the 3D PDFs and produce
a more user friendly form, the probability densities
were summed across the entire δ(13Cα), ϕ, ψ data
set for each amino acid residue. Since the densities
had previously been normalized over all amino acid
residues at each ϕ, ψ and δ(13Cα) point, the result-
ing sums provide an indication of how well separated
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Table 3. Assignment results for a set of 10 proteins

PDB id BMRB (δ(13Cα), ϕ, ψ) % Correct Experimental % Secondary

(#residues) accession assignments structure structurec

number 4 Residues 6 Residues data type α-Helix β-Strand

1M2Y (54) 5601 84 100 NMRa 0 4

1C0V (79) 4146 85 96 NMR 82 0

1QJT (99) 4140 44 70 NMR 42 0

1IRF (112) 4161 23 43 NMR 29 13

2IRFb (113) 4161b 52 81 X-ray 33 14

1DMO (148) 4056 39 71 NMR 55 5

1SYM (184) 4001 62 84 NMR 55 4

1CDC (198) 4109 78 98 X-ray 0 35

1EZA (259) 4264 39 76 NMR 50 10

1AZM (260) 4022 47 80 X-ray 8 28

1L6N (289) 5316 37 74 NMR 56 0

Average ± sdd 54 ± 21 79 ± 16 37 ± 26 10 ± 12

aϕ, ψ Values determined using dipolar couplings, see Tian et al. (2001).
bChemical shift data from the unbound solution structure (1IRF) was used in this analysis.
c Secondary structure content as listed in the PDB in the Sequence Details section.
dAverages and standard deviations for calculated values over all proteins used.

the distributions are. In Figure 3 the sums have been
divided by the sum for leucine, which has the smal-
lest sum, to produce a single number related to the
value of δ(13Cα), ϕ and ψ information in identifying
each amino acid residue. Not surprisingly, glycine has
the highest identification value by far (almost 16 ×
leucine). Although this could easily be predicted by
glycine’s unique 13Cα chemical shift, the reason that
threonine has the second highest value is less obvious.
Threonine valine, proline, and isoleucine, all have,
on average, similar 13Cα shifts. This suggests that the
basis for distinction is more complex.

Surprisingly, regions with regular secondary struc-
ture (α-helices and β-strands) do not result in more
accurate assignments than regions that lack regular
secondary structure (everything not defined as an α-
helix or β-strand). Of the proteins tested, about half
of the data are for regions lacking regular second-
ary structure and the accuracy is no worse or better
than structured regions. Among the fragments lacking
regular secondary structure, 46% of the four residue
fragments are assigned correctly while 76% of the
six residue fragments are assigned correctly. In the
fragments having regular secondary structure, 47% of
the α helices and 48% of the β-strands are assigned
correctly in the four residue fragments whereas 77%
of the α-helices and 68% of the β-strands are as-
signed correctly. We still do not expect the program
to perform well on highly flexible regions of proteins

where chemical shifts may not correlate with average
structural parameters or in cases where there are re-
dundancies in sequence. This may have in fact been a
factor in our second lowest score (1DMO) at 71%.

An indication of the confidence one should have in
a given sequential assignment is also an important is-
sue. The raw probability score obtained for a fragment
can be used to give this indication. Figure 4 shows
the probability of correct assignment for the top score
given a fragment of four or six residues. Since indi-
vidual probability densities in the data sets are always
between zero and one, it is not unusual to obtain over-
all raw scores on the order of 10−4 for a four residue
fragment and 10−6 for a six residue fragment. The
highest scores obtained so far are 3 × 10−2 and 2 ×
10−3, for four and six residue fragments respectively.
Respective scores for these fragments can be as low as
10−5 and 10−7. In cases where the raw score is equal
to or greater than 2 × 10−3 for a four residue frag-
ment the probability of a correct assignment is greater
than 80%. For a six residue fragment a score equal to
or greater than 3 × 10−6 results in a more than 90%
probability of correct assignment. In addition, scores
at or above 10−4 for a six residue fragment lead to
assignment with near certainty.

A problem that requires a program to go a step
beyond the proper sequential placement of correctly
connected fragments is one in which there is some un-
certainty in the connection, possibly due to degeneracy
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Figure 3. Value of δ(13Cα), ϕ, ψ in identifying an isolated single amino acid residue. All values are relative to the lowest value (leucine) and
are multiples of that value.

in 13Cα shifts used to establish connections between
the residues. Connectivities correctly representing the
fragment may be determined by comparison of the
probabilities of each of the proposed connections.
Each of the possible fragments is threaded through
the sequence taking the torsion angles, φ and ψ, from
a proposed structure; the probabilities are calculated
for each possible assembly and the highest score, or
probability, is used to identify the correct assembly in
addition to the proper sequential position. The right-
most column in Table 2 compared the results of this
adaptation, using correctly assembled fragments, with
the original program in which the 13Cα chemical shifts
were paired with experimentally determined ϕ and ψ

To test the method’s ability to identify fragments that
are not correctly connected several pairs of sequences
6 or 7 residues in length were threaded through the
sequence with one member of the pair being cor-
rectly connected and the other incorrectly connected.
In all cases the correctly connected sequence gave the
highest score and was properly placed in the sequence.
The same criteria given above for confidence in as-
signment, 3 × 10−6 for a six residue fragment and
2 × 10−3 for a four residue fragment, resulted in a
confirmation of correct assignment for the six residue
fragments but scores for the four residue fragment
were below the 80% standard in all cases.

Conclusion

Through this work we have demonstrated a new as-
signment strategy based on the availability of local
backbone geometry and limited chemical shift data.
Although results for only one protein using the Tian
protocol (Tian et al., 2001) have been shown, ex-
amples using larger proteins will follow in the near fu-
ture. These proteins will enable us to better determine
the practical limits of the program with such data. We
anticipate applications where high throughput struc-
ture determination is an issue and where assignment
of resonances for proteins of known structure is a re-
search objective. As expected, the likelihood of correct
assignment increases with increased connectivity and
success varies somewhat depending on amino acid
residue type. A detailed examination of the results
indicates that fragments containing glycine are most
often identified correctly. This is not surprising given
that the δ(13Cα) for glycine is the furthest upfield of the
amino acid residues and is narrowly distributed. His-
tidine and tryptophan have so far been the two amino
acid residues least likely to be correctly identified, but
as with other amino acid residues, their probabilities
for correct assignment rise with an increase in the
fragment length in which they are found.

The data in Table 2 illustrate the reduction of per-
formance when using 3JHNHA in the place of ϕ, ψ. Al-
though this result is expected, the performance of the
algorithm with the use of 3JHNHA is still useful. The
program presented has relied heavily on 13Cα shifts
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Figure 4. Correct assignment probability as a function of raw score for four residue fragments (bottom scale) and six residue fragments (top
scale).

because of their known sensitivity and ready availabil-
ity from high sensitivity triple resonance experiments.
Other carbon, nitrogen, and proton chemical shifts
may also be incorporated in future versions of the
program.
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